Reference: Anderson MJ, et al. (2012) Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library. FEMS Yeast Res 12(1):48-60

Reference Help

Abstract

Saccharomyces cerevisiae (S. cerevisiae) encounters a multitude of stresses during industrial processes such as wine fermentation including ethanol toxicity. High levels of ethanol reduce the viability of yeast and may prevent completion of fermentation. The identification of ethanol-tolerant genes is important for creating stress-resistant industrial yeast, and S. cerevisiae genomic resources have been utilized for this purpose. We have employed a molecular barcoded yeast open reading frame (MoBY-ORF) high copy plasmid library to identify ethanol-tolerant genes in both the S. cerevisiae S288C laboratory and M2 wine strains. We find that increased dosage of either RCN1 or RSA3 improves tolerance of S288C and M2 to toxic levels of ethanol. RCN1 is a regulator of calcineurin, whereas RSA3 has a role in ribosome maturation. Additional fitness advantages conferred upon overproduction of RCN1 and RSA3 include increased resistance to cell wall degradation, heat, osmotic and oxidative stress. We find that the M2 wine yeast strain is generally more tolerant of stress than S288C with the exception of translation inhibition, which affects M2 growth more severely than S288C. We conclude that regulation of ribosome biogenesis and ultimately translation is a critical factor for S. cerevisiae survival during industrial-related environmental stress.

Reference Type
Journal Article
Authors
Anderson MJ, Barker SL, Boone C, Measday V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference