Take our Survey

Reference: Woodruff JB, et al. (2012) Spindle assembly requires complete disassembly of spindle remnants from the previous cell cycle. Mol Biol Cell 23(2):258-67

Reference Help

Abstract


Incomplete mitotic spindle disassembly causes lethality in budding yeast. To determine why spindle disassembly is required for cell viability, we used live-cell microscopy to analyze a double mutant strain containing a conditional mutant and a deletion mutant compromised for the kinesin-8 and anaphase-promoting complex-driven spindle-disassembly pathways (td-kip3 and doc1?, respectively). Under nonpermissive conditions, spindles in td-kip3 doc1? cells could break apart but could not disassemble completely. These cells could exit mitosis and undergo cell division. However, the daughter cells could not assemble functional, bipolar spindles in the ensuing mitosis. During the formation of these dysfunctional spindles, centrosome duplication and separation, as well as recruitment of key midzone-stabilizing proteins all appeared normal, but microtubule polymerization was nevertheless impaired and these spindles often collapsed. Introduction of free tubulin through episomal expression of a- and ?-tubulin or introduction of a brief pulse of the microtubule-depolymerizing drug nocodazole allowed spindle assembly in these td-kip3 doc1? mutants. Therefore we propose that spindle disassembly is essential for regeneration of the intracellular pool of assembly-competent tubulin required for efficient spindle assembly during subsequent mitoses of daughter cells.

Reference Type
Journal Article
Authors
Woodruff JB, Drubin DG, Barnes G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference