Take our Survey

Reference: Roelants FM, et al. (2011) Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(48):19222-7

Reference Help

Abstract

The Orm family proteins are conserved integral membrane proteins of the endoplasmic reticulum that are key homeostatic regulators of sphingolipid biosynthesis. Orm proteins bind to and inhibit serine:palmitoyl-coenzyme A transferase, the first enzyme in sphingolipid biosynthesis. In Saccharomyces cerevisiae, Orm1 and Orm2 are inactivated by phosphorylation in response to compromised sphingolipid synthesis (e.g., upon addition of inhibitor myriocin), thereby restoring sphingolipid production. We show here that protein kinase Ypk1, one of an essential pair of protein kinases, is responsible for this regulatory modification. Myriocin-induced hyperphosphorylation of Orm1 and Orm2 does not occur in ypk1 cells, and immunopurified Ypk1 phosphorylates Orm1 and Orm2 robustly in vitro exclusively on three residues that are known myriocin-induced sites. Furthermore, the temperature-sensitive growth of ypk1(ts) ypk2 cells is substantially ameliorated by deletion of ORM genes, confirming that a primary physiological role of Ypk1-mediated phosphorylation is to negatively regulate Orm function. Ypk1 immunoprecipitated from myriocin-treated cells displays a higher specific activity for Orm phosphorylation than Ypk1 from untreated cells. To identify the mechanism underlying Ypk1 activation, we systematically tested several candidate factors and found that the target of rapamycin complex 2 (TORC2) kinase plays a key role. In agreement with prior evidence that a TORC2-dependent site in Ypk1(T662) is necessary for cells to exhibit a wild-type level of myriocin resistance, a Ypk1(T662A) mutant displays only weak Orm phosphorylation in vivo and only weak activation in vitro in response to sphingolipid depletion. Additionally, sphingolipid depletion increases phosphorylation of Ypk1 at T662. Thus, Ypk1 is both a sensor and effector of sphingolipid level, and reduction in sphingolipids stimulates Ypk1, at least in part, via TORC2-dependent phosphorylation.

Reference Type
Journal Article
Authors
Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference