Take our Survey

Reference: Pais JE, et al. (2011) Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor. Mol Biol Cell 22(24):4740-9

Reference Help

Abstract


The heat-shock protein 70 (Hsp70)-based import motor, associated with the translocon on the matrix side of the mitochondrial inner membrane, drives translocation of proteins via cycles of binding and release. Stimulation of Hsp70's ATPase activity by the translocon-associated J-protein Pam18 is critical for this process. Pam18 forms a heterodimer with the structurally related protein Pam16, via their J-type domains. This interaction has been proposed to perform a critical regulatory function, inhibiting the ATPase stimulatory activity of Pam18. Using biochemical and genetic assays, we tested this hypothesis by assessing the in vivo function of Pam18 variants having altered abilities to stimulate Hsp70's ATPase activity. The observed pattern of genetic interactions was opposite from that predicted if the heterodimer serves an inhibitory function; instead the pattern was consistent with that of mutations known to cause reduction in the stability of the heterodimer. Analysis of a previously uncharacterized region of Pam16 revealed its requirement for formation of an active Pam18:Pam16 complex able to stimulate Hsp70's ATPase activity. Together, our data are consistent with the idea that Pam18 and Pam16 form a stable heterodimer and that the critical role of the Pam18:Pam16 interaction is the physical tethering of Pam18 to the translocon via its interaction with Pam16.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Pais JE, Schilke B, Craig EA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference