Reference: Mathur S, et al. (2011) The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress. Plant Physiol 157(4):1609-27

Reference Help

Abstract


The Mediator (Med) complex relays regulatory information from DNA-bound transcription factors to the RNA polymerase II in eukaryotes. This macromolecular unit is composed of three core subcomplexes in addition to a separable kinase module. In this study, conservation of Meds has been investigated in 16 plant species representing seven diverse groups across the plant kingdom. Using Hidden Markov Model-based conserved motif searches, we have identified all the known yeast/metazoan Med components in one or more plant groups, including the Med26 subunits, which have not been reported so far for any plant species. We also detected orthologs for the Arabidopsis (Arabidopsis thaliana) Med32, -33, -34, -35, -36, and -37 in all the plant groups, and in silico analysis identified the Med32 and Med33 subunits as apparent orthologs of yeast/metazoan Med2/29 and Med5/24, respectively. Consequently, the plant Med complex appears to be composed of one or more members of 34 subunits, as opposed to 25 and 30 members in yeast and metazoans, respectively. Despite low similarity in primary Med sequences between the plants and their fungal/metazoan partners, secondary structure modeling of these proteins revealed a remarkable similarity between them, supporting the conservation of Med organization across kingdoms. Phylogenetic analysis between plant, human, and yeast revealed single clade relatedness for 29 Med genes families in plants, plant Meds being closer to human than to yeast counterparts. Expression profiling of rice (Oryza sativa) and Arabidopsis Med genes reveals that Meds not only act as a basal regulator of gene expression but may also have specific roles in plant development and under abiotic stress conditions.

Reference Type
Journal Article
Authors
Mathur S, Vyas S, Kapoor S, Tyagi AK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference