Take our Survey

Reference: Fujimura T and Esteban R (2011) Cap-snatching mechanism in yeast L-A double-stranded RNA virus. Proc Natl Acad Sci U S A 108(43):17667-71

Reference Help

Abstract


The 5' cap structure (m(7)GpppX-) is an essential feature of eukaryotic mRNA required for mRNA stability and efficient translation. Influenza virus furnishes its mRNA with this structure by a cap-snatching mechanism, in which the viral polymerase cleaves host mRNA endonucleolytically 10-13 nucleotides from the 5' end and utilizes the capped fragment as a primer to synthesize viral transcripts. Here we report a unique cap-snatching mechanism by which the yeast double-stranded RNA totivirus L-A furnishes its transcript with a cap structure derived from mRNA. Unlike influenza virus, L-A transfers only m(7)Gp from the cap donor to the 5' end of the viral transcript, thus preserving the 5' a- and ?-phosphates of the transcript in the triphosphate linkage of the final product. This in vitro capping reaction requires His154 of the coat protein Gag, a residue essential for decapping of host mRNA and known to form m(7)Gp-His adduct. Furthermore, the synthesis of capped viral transcripts in vivo and their expression were greatly compromised by the Arg154 mutation, indicating the involvement of Gag in the cap-snatching reaction. The overall reaction and the structure around the catalytic site in Gag resemble those of guanylyltransferase, a key enzyme of cellular mRNA capping, suggesting convergent evolution. Given that Pol of L-A is confined inside the virion and unable to access host mRNA in the cytoplasm, the structural protein Gag rather than Pol catalyzing this unique cap-snatching reaction exemplifies the versatility as well as the adaptability of eukaryotic RNA viruses.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fujimura T, Esteban R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference