Take our Survey

Reference: Bhaduri S and Pryciak PM (2011) Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr Biol 21(19):1615-23

Reference Help

Abstract


BACKGROUND: The eukaryotic cell cycle begins with a burst of cyclin-dependent kinase (Cdk) phosphorylation. In budding yeast, several Cdk substrates are preferentially phosphorylated at the G1/S transition rather than later in the cell cycle when Cdk activity levels are high. These early Cdk substrates include signaling proteins in the pheromone response pathway. Two such proteins, Ste5 and Ste20, are phosphorylated only when Cdk is associated with the G1/S cyclins Cln1 and Cln2 and not G1, S, or M cyclins. The basis of this cyclin specificity is unknown. RESULTS: Here we show that Ste5 and Ste20 have recognition sequences, or "docking" sites, for the G1/S cyclins. These docking sites, which are distinct from Clb5/cyclin A-binding "RXL" motifs, bind preferentially to Cln2. They strongly enhance Cln2-driven phosphorylation of each substrate in vivo and function largely independent of position and distance to the Cdk sites. We exploited this functional independence to rewire a Cdk regulatory circuit in a way that changes the target of Cdk inhibition in the pheromone response pathway. Furthermore, we uncover functionally active Cln2 docking motifs in several other Cdk substrates. The docking motifs drive cyclin-specific phosphorylation, and the cyclin preference can be switched by using a distinct motif. CONCLUSIONS: Our findings indicate that some Cdk substrates are intrinsically capable of being phosphorylated by several different cyclin-Cdk forms, but they are inefficiently phosphorylated in vivo without a cyclin-specific docking site. Docking interactions may play a prevalent but previously unappreciated role in driving phosphorylation of select Cdk substrates preferentially at the G1/S transition. Copyright ? 2011 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Bhaduri S, Pryciak PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference