Take our Survey

Reference: Jin M, et al. (2011) Yeast dynamically modify their environment to achieve better mating efficiency. Sci Signal 4(186):ra54

Reference Help

Abstract


The maintenance and detection of signaling gradients are critical for proper development and cell migration. In single-cell organisms, gradient detection allows cells to orient toward a distant mating partner or nutrient source. Budding yeast expand their growth toward mating pheromone gradients through a process known as chemotropic growth. MATalpha cells secrete alpha-factor pheromone that stimulates chemotropism and mating differentiation in MATa cells and vice versa. Paradoxically, MATa cells secrete Bar1, a protease that degrades alpha-factor and that attenuates the mating response, yet is also required for efficient mating. We observed that MATa cells avoid each other during chemotropic growth. To explore this behavior, we developed a computational platform to simulate chemotropic growth. Our simulations indicated that the release of Bar1 enabled individual MATa cells to act as alpha-factor sinks. The simulations suggested that the resultant local reshaping of pheromone concentration created gradients that were directed away from neighboring MATa cells (self-avoidance) and that were increasingly amplified toward partners of the opposite sex during elongation. The behavior of Bar1-deficient cells in gradient chambers and mating assays supported these predictions from the simulations. Thus, budding yeast dynamically remodel their environment to ensure productive responses to an external stimulus and avoid nonproductive cell-cell interactions.

Reference Type
Journal Article
Authors
Jin M, Errede B, Behar M, Mather W, Nayak S, Hasty J, Dohlman HG, Elston TC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference