Reference: Wloka C, et al. (2011) Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biol Chem 392(8-9):813-829

Reference Help

Abstract

Abstract Septins are essential for cytokinesis in Saccharomyces cerevisiae, but their precise roles remain elusive. Currently, it is thought that before cytokinesis, the hourglass-shaped septin structure at the mother-bud neck acts as a scaffold for assembly of the actomyosin ring (AMR) and other cytokinesis factors. At the onset of cytokinesis, the septin hourglass splits to form a double ring that sandwiches the AMR and may function as diffusion barriers to restrict diffusible cytokinesis factors to the division site. Here, we show that in cells lacking the septin Cdc10 or the septin-associated protein Bud4, the septins form a ring-like structure at the mother-bud neck that fails to re-arrange into a double ring early in cytokinesis. Strikingly, AMR assembly and constriction, the localization of membrane-trafficking and extracellular-matrix-remodeling factors, cytokinesis, and cell-wall-septum formation all occur efficiently in cdc10Delta and bud4Delta mutants. Thus, diffusion barriers formed by the septin double ring do not appear to be critical for S. cerevisiae cytokinesis. However, an AMR mutation and a septin mutation have synergistic effects on cytokinesis and the localization of cytokinesis proteins, suggesting that tethering to the AMR and a septin diffusion barrier may function redundantly to localize proteins to the division site.

Reference Type
Journal Article
Authors
Wloka C, Nishihama R, Onishi M, Oh Y, Hanna J, Pringle JR, Krauss M, Bi E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference