Take our Survey

Reference: Li Z, et al. (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27(19):2686-91

Reference Help

Abstract

BACKGROUND: Reverse engineering gene regulatory networks, especially large size networks from time series gene expression data, remain a challenge to the systems biology community. In this article, a new hybrid algorithm integrating ordinary differential equation models with dynamic Bayesian network analysis, called Differential Equation-based Local Dynamic Bayesian Network (DELDBN), was proposed and implemented for gene regulatory network inference. RESULTS: The performance of DELDBN was benchmarked with an in vivo dataset from yeast. DELDBN significantly improved the accuracy and sensitivity of network inference compared with other approaches. The local causal discovery algorithm implemented in DELDBN also reduced the complexity of the network inference algorithm and improved its scalability to infer larger networks. We have demonstrated the applicability of the approach to a network containing thousands of genes with a dataset from human HeLa cell time series experiments. The local network around BRCA1 was particularly investigated and validated with independent published studies. BRAC1 network was significantly enriched with the known BRCA1-relevant interactions, indicating that DELDBN can effectively infer large size gene regulatory network from time series data. BACKGROUND: The R scripts are provided in File 3 in Supplementary Material. BACKGROUND: zheng.li@monsanto.com; jingdong.liu@monsanto.com BACKGROUND: Supplementary data are available at Bioinformatics online.

Reference Type
Journal Article
Authors
Li Z, Li P, Krishnan A, Liu J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference