Take our Survey

Reference: Baek GH, et al. (2011) The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proc Natl Acad Sci U S A 108(33):13558-63

Reference Help

Abstract

Rad23 and cell division cycle protein 48 (Cdc48), two key regulators of postubiquitylation events, act on distinct and overlapping sets of substrates. The principle underlying their division of labor and cooperation in proteolysis remains elusive. Both Rad23 and Cdc48 bind a ubiquitin protein ligase ubiquitin fusion degradation-2 (Ufd2), and regulate the degradation of Ufd2 substrates. With its ability to bind ubiquitin chains directly and the proteasome via different domains, Rad23 serves as a bridge linking ubiquitylated substrates to the proteasome. The significance and specific role of the Ufd2-Cdc48 interaction are unclear. Here, we demonstrate that mutations in Ufd2 alter its interaction with Cdc48 and impair its function in substrate proteolysis but not in ubiquitylation. Furthermore, Cdc48 promotes the disassembly of the Ufd2-Rad23 complex in an manner that is dependent on ATP and Ufd2 binding, revealing a biochemical role for Cdc48. Rad23 was shown to bind separately to Ufd2 and to the proteasome subunit Rpn1, which define two distinct steps in proteolysis. The action of Cdc48 could free Rad23 from Ufd2 to allow its subsequent association with Rpn1, which in turn may facilitate the orderly transfer of the substrate from the ubiquitylation apparatus to the proteasome.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Baek GH, Kim I, Rao H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference