Reference: Kopec KO, et al. (2011) Bioinformatics of the TULIP domain superfamily. Biochem Soc Trans 39(4):1033-8

Reference Help

Abstract

Proteins of the BPI (bactericidal/permeability-increasing protein)-like family contain either one or two tandem copies of a fold that usually provides a tubular cavity for the binding of lipids. Bioinformatic analyses show that, in addition to its known members, which include BPI, LBP [LPS (lipopolysaccharide)-binding protein)], CETP (cholesteryl ester-transfer protein), PLTP (phospholipid-transfer protein) and PLUNC (palate, lung and nasal epithelium clone) protein, this family also includes other, more divergent groups containing hypothetical proteins from fungi, nematodes and deep-branching unicellular eukaryotes. More distantly, BPI-like proteins are related to a family of arthropod proteins that includes hormone-binding proteins (Takeout-like; previously described to adopt a BPI-like fold), allergens and several groups of uncharacterized proteins. At even greater evolutionary distance, BPI-like proteins are homologous with the SMP (synaptotagmin-like, mitochondrial and lipid-binding protein) domains, which are found in proteins associated with eukaryotic membrane processes. In particular, SMP domain-containing proteins of yeast form the ERMES [ER (endoplasmic reticulum)-mitochondria encounter structure], required for efficient phospholipid exchange between these organelles. This suggests that SMP domains themselves bind lipids and mediate their exchange between heterologous membranes. The most distant group of homologues we detected consists of uncharacterized animal proteins annotated as TM (transmembrane) 24. We propose to group these families together into one superfamily that we term as the TULIP (tubular lipid-binding) domain superfamily.

Reference Type
Journal Article
Authors
Kopec KO, Alva V, Lupas AN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference