Reference: Li X, et al. (2011) Regulating cytoplasmic calcium homeostasis can reduce aluminum toxicity in yeast. PLoS One 6(6):e21148

Reference Help

Abstract

Our previous study suggested that increased cytoplasmic calcium (Ca) signals may mediate aluminum (Al) toxicity in yeast (Saccharomyces cerevisiae). In this report, we found that a yeast mutant, pmc1, lacking the vacuolar calcium ion (Ca(2+)) pump Ca(2+)-ATPase (Pmc1p), was more sensitive to Al treatment than the wild-type strain. Overexpression of either PMC1 or an anti-apoptotic factor, such as Bcl-2, Ced-9 or PpBI-1, decreased cytoplasmic Ca(2+) levels and rescued yeast from Al sensitivity in both the wild-type and pmc1 mutant. Moreover, pretreatment with the Ca(2+) chelator BAPTA-AM sustained cytoplasmic Ca(2+) at low levels in the presence of Al, effectively making the cells more tolerant to Al exposure. Quantitative RT-PCR revealed that the expression of calmodulin (CaM) and phospholipase C (PLC), which are in the Ca(2+) signaling pathway, was down-regulated under Al stress. This effect was largely counteracted when cells overexpressed anti-apoptotic Ced-9 or were pretreated with BAPTA-AM. Taken together, our results suggest that the negative regulation of Al-induced cytoplasmic Ca signaling is a novel mechanism underlying internal resistance to Al toxicity.

Reference Type
Journal Article
Authors
Li X, Qian J, Wang C, Zheng K, Ye L, Fu Y, Han N, Bian H, Pan J, Wang J, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference