Take our Survey

Reference: Yu D, et al. (2011) Noise reduction in genome-wide perturbation screens using linear mixed-effect models. Bioinformatics 27(16):2173-80

Reference Help

Abstract

BACKGROUND: High-throughput perturbation screens measure the phenotypes of thousands of biological samples under various conditions. The phenotypes measured in the screens are subject to substantial biological and technical variation. At the same time, in order to enable high throughput, it is often impossible to include a large number of replicates, and to randomize their order throughout the screens. Distinguishing true changes in the phenotype from stochastic variation in such experimental designs is extremely challenging, and requires adequate statistical methodology. RESULTS: We propose a statistical modeling framework that is based on experimental designs with at least two controls profiled throughout the experiment, and a normalization and variance estimation procedure with linear mixed-effects models. We evaluate the framework using three comprehensive screens of Saccharomyces cerevisiae, which involve 4940 single-gene knock-out haploid mutants, 1127 single-gene knock-out diploid mutants and 5798 single-gene overexpression haploid strains. We show that the proposed approach (i) can be used in conjunction with practical experimental designs; (ii) allows extensions to alternative experimental workflows; (iii) enables a sensitive discovery of biologically meaningful changes; and (iv) strongly outperforms the existing noise reduction procedures. BACKGROUND: All experimental datasets are publicly available at www.ionomicshub.org. The R package HTSmix is available at http://www.stat.purdue.edu/~ovitek/HTSmix.html. BACKGROUND: ovitek@stat.purdue.edu BACKGROUND: Supplementary data are available at Bioinformatics online.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Yu D, Danku J, Baxter I, Kim S, Vatamaniuk OK, Salt DE, Vitek O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference