Take our Survey

Reference: Peng Y, et al. (2011) Overlapping kinetochore targets of CK2 and Aurora B kinases in mitotic regulation. Mol Biol Cell 22(15):2680-9

Reference Help

Abstract

Protein kinase CK2 is one of the most conserved kinases in eukaryotic cells and plays essential roles in diverse processes. While we know that CK2 plays a role(s) in cell division, our understanding of how CK2 regulates cell cycle progression is limited. In this study, we revealed a regulatory role for CK2 in kinetochore function. The kinetochore is a multi-protein complex that assembles on the centromere of a chromosome and functions to attach chromosomes to spindle microtubules. To faithfully segregate chromosomes and maintain genomic integrity, the kinetochore is tightly regulated by multiple mechanisms, including phosphorylation by Aurora B kinase. We found that a loss of CK2 kinase activity inhibits anaphase spindle elongation and results in chromosome missegregation. Moreover, a lack of CK2 activates the spindle assembly checkpoint. We demonstrate that CK2 associates with Mif2, the Saccharomyces cerevisiae homologue of human CENP-C, which serves as an important link between the inner and outer kinetochore. Furthermore, we show Mif2 and the inner kinetochore protein Ndc10 are phosphorylated by CK2, and this phosphorylation plays antagonistic and synergistic roles with Aurora B phosphorylation of these targets, respectively.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Peng Y, Wong CC, Nakajima Y, Tyers RG, Sarkeshik AS, Yates J 3rd, Drubin DG, Barnes G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference