Reference: Helsens K, et al. (2011) Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J Proteome Res 10(8):3578-89

Reference Help

Abstract

Initiation of protein translation is a well-studied fundamental process, albeit high-throughput and more comprehensive determination of the exact translation initiation sites (TIS) was only recently made possible following the introduction of positional proteomics techniques that target protein N-termini. Precise translation initiation is of crucial importance, as truncated or extended proteins might fold, function, and locate erroneously. Still, as already shown for some proteins, alternative translation initiation can also serve as a regulatory mechanism. By applying N-terminal COFRADIC (combined fractional diagonal chromatography), we here isolated N-terminal peptides of a Saccharomyces cerevisiae proteome and analyzed both annotated and alternative TIS. We analyzed this N-terminome of S. cerevisiae which resulted in the identification of 650 unique N-terminal peptides corresponding to database annotated TIS. Furthermore, 56 unique N(a)-acetylated peptides were identified that suggest alternative TIS (MS/MS-based), while MS-based evidence of N(a)-acetylation led to an additional 33 such peptides. To improve the overall sensitivity of the analysis, we also included the 5' UTR (untranslated region) in-frame translations together with the yeast protein sequences in UniProtKB/Swiss-Prot. To ensure the quality of the individual peptide identifications, peptide-to-spectrum matches were only accepted at a 99% probability threshold and were subsequently analyzed in detail by the Peptizer tool to automatically ascertain their compliance with several expert criteria. Furthermore, we have also identified 60 MS/MS-based and 117 MS-based N(a)-acetylated peptides that point to N(a)-acetylation as a post-translational modification since these peptides did not start nor were preceded (in their corresponding protein sequence) by a methionine residue. Next, we evaluated consensus sequence features of nucleic acids and amino acids across each of these groups of peptides and evaluated the results in the context of publicly available data. Taken together, we present a list of 706 annotated and alternative TIS for yeast proteins and found that under normal growth conditions alternative TIS might (co)occur in S. cerevisiae in roughly one tenth of all proteins. Furthermore, we found that the nucleic acid and amino acid features proximate to these alternative TIS favor either guanine or adenine nucleotides following the start codon or acidic amino acids following the initiator methionine. Finally, we also observed an unexpected high number of N(a)-acetylated peptides that could not be related to TIS and therefore suggest events of post-translational N(a)-acetylation.

Reference Type
Journal Article
Authors
Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference