Take our Survey

Reference: Clark AB, et al. (2011) Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase varepsilon. DNA Repair (Amst) 10(5):476-82

Reference Help

Abstract

During DNA synthesis in vitro using dNTP and rNTP concentrations present in vivo, yeast replicative DNA polymerases alpha, delta and varepsilon (Pols alpha, delta and varepsilon) stably incorporate rNTPs into DNA. rNTPs are also incorporated during replication in vivo, and they are repaired in an RNase H2-dependent manner. In strains encoding a mutator allele of Pol varepsilon (pol2-M644G), failure to remove rNMPs from DNA due to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2, results in deletion of 2-5 base pairs in short repetitive sequences. Deletion rates depend on the orientation of the reporter gene relative to a nearby replication origin, suggesting that mutations result from rNMPs incorporated during replication. Here we demonstrate that 2-5 base pair deletion mutagenesis also strongly increases in rnh201Delta strains encoding wild type DNA polymerases. As in the pol2-M644G strains, the deletions occur at repetitive sequences and are orientation-dependent, suggesting that mismatches involving misaligned strands arise that could be subject to mismatch repair. Unexpectedly however, 2-5 base pair deletion rates resulting from loss of RNH201 in the pol2-M644G strain are unaffected by concomitant loss of MSH3, MSH6, or both. It could be that the mismatch repair machinery is unable to repair mismatches resulting from unrepaired rNMPs incorporated into DNA by M644G Pol varepsilon, but this possibility is belied by the observation that Msh2-Msh6 can bind to a ribonucleotide-containing mismatch. Alternatively, following incorporation of rNMPs by M644G Pol varepsilon during replication, the conversion of unrepaired rNMPs into mutations may occur outside the context of replication, e.g., during the repair of nicks resulting from rNMPs in DNA. The results make interesting predictions that can be tested.CI - Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Clark AB, Lujan SA, Kissling GE, Kunkel TA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference