Take our Survey

Reference: Xi Y, et al. (2011) Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. Genome Res 21(5):718-24

Reference Help

Abstract

The structural complexity of nucleosomes underlies their functional versatility. Here we report a new type of complexity - nucleosome fragility, manifested as high sensitivity to micrococcal nuclease, in contrast to the common presumption that nucleosomes are similar in resistance to MNase digestion. Using differential MNase digestion of chromatin and high-throughput sequencing, we have identified a special group of nucleosomes termed fragile nucleosomes throughout the yeast genome, nearly one thousand of which at previously determined "nucleosome free" loci. Nucleosome fragility is broadly implicated in multiple chromatin processes, including transcription, translocation and replication, in correspondence to specific physiological states of cells. In the environmental-stress-response genes, the presence of fragile nucleosomes prior to the occurrence of environmental changes suggests that nucleosome fragility poises genes for swift up-regulation in response to the environmental changes. We propose that nucleosome fragility underscores distinct functional statuses of the chromatin and provides a new dimension for portraying the landscape of genome organization.

Reference Type
Journal Article
Authors
Xi Y, Yao J, Chen R, Li W, He X
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference