Take our Survey

Reference: Schorzman AN, et al. (2011) Modeling of the DNA-binding site of yeast Pms1 by mass spectrometry. DNA Repair (Amst) 10(5):454-65

Reference Help

Abstract


Mismatch repair (MMR) corrects replication errors that would otherwise lead to mutations and, potentially, various forms of cancer. Among several proteins required for eukaryotic MMR, MutLalpha is a heterodimer comprised of Mlh1 and Pms1. The two proteins dimerize along their C-terminal domains (CTDs), and the CTD of Pms1 houses a latent endonuclease that is required for MMR. The highly conserved N-terminal domains (NTDs) independently bind DNA and possess ATPase active sites. Here we use two protein footprinting techniques, limited proteolysis and oxidative surface mapping, coupled with mass spectrometry to identify amino acids involved along the DNA-binding surface of the Pms1-NTD. Limited proteolysis experiments elucidated several basic residues that were protected in the presence of DNA, while oxidative surface mapping revealed one residue that is uniquely protected from oxidation. Furthermore, additional amino acids distributed throughout the Pms1-NTD were protected from oxidation either in the presence of a non-hydrolyzable analog of ATP or DNA, indicating that each ligand stabilizes the protein in a similar conformation. Based on the recently published X-ray crystal structure of yeast Pms1-NTD, a model of the Pms1-NTD/DNA complex was generated using the mass spectrometric data as constraints. The proposed model defines the DNA-binding interface along a positively charged groove of the Pms1-NTD and complements prior mutagenesis studies of Escherichia coli and eukaryotic MutL.CI - Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Schorzman AN, Perera L, Cutalo-Patterson JM, Pedersen LC, Pedersen LG, Kunkel TA, Tomer KB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference