Take our Survey

Reference: Kato K, et al. (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 28(5):339-47

Reference Help

Abstract


Stress granules (SGs) and processing bodies (P bodies) are cytoplasmic domains and play a role in the control of translation and mRNA turnover in mammalian cells subjected to environmental stress. Recent studies have revealed that SGs also form in the budding yeast Saccharomyces cerevisiae in response to glucose depletion and robust heat shock. However, information about the types of stress that cause budding yeast SGs is quite limited. Here we demonstrate that severe ethanol stress generates budding yeast SGs in a manner independent of the phosphorylation of eIF2alpha. The concentration that generated budding yeast SGs (>10%) was higher than that causing P bodies (>6%), and P bodies were assembled prior to SGs. As well as mammalian SGs, the assembly of budding yeast SGs under ethanol stress was blocked by cycloheximide. On the other hand, the budding yeast SGs caused by ethanol stress contained eIF3c but not eIF3a and eIF3b, although the eIF3 complex is a core constituent of mammalian SGs. Moreover, null mutants (pbp1Delta, pub1Delta and tif4632Delta) with a strong reduction in SG formation did not resume proliferation after the elimination of ethanol stress, indicating that the formation of budding yeast SGs might play a role in sufficient recovery from ethanol stress. Copyright (c) 2011 John Wiley & Sons, Ltd.CI - Copyright (c) 2011 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Kato K, Yamamoto Y, Izawa S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference