Reference: de Brevern AG, et al. (2011) Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet. J Theor Biol 276(1):209-17

Reference Help

Abstract


Protein structure analysis and prediction methods are based on non-redundant data extracted from the available protein structures, regardless of the species from which the protein originates. Hence, these datasets represent the global knowledge on protein folds, which constitutes a generic distribution of amino acid sequence-protein structure (AAS-PS) relationships. In this study, we try to elucidate whether the AAS-PS relationship could possess specificities depending on the specie. For this purpose, we have chosen three different species: Saccharomyces cerevisiae, Plasmodium falciparum and Arabidopsis thaliana. We analyzed the AAS-PS behaviors of the proteins from these three species and compared it to the "expected" distribution of a classical non-redundant databank. With the classical secondary structure description, only slight differences in amino acid preferences could be observed. With a more precise description of local protein structures (Protein Blocks), significant changes could be highlighted. S. cerevisiae's AAS-PS relationship is close to the general distribution, while striking differences are observed in the case of A. thaliana. P. falciparum is the most distant one. This study presents some interesting view-points on AAS-PS relationship. Certain species exhibit unique preferences for amino acids to be associated with protein local structural elements. Thus, AAS-PS relationships are species dependent. These results can give useful insights for improving prediction methodologies which take the species specific information into account.CI - Copyright (c) 2011. Published by Elsevier Ltd.

Reference Type
Journal Article
Authors
de Brevern AG, Praveen Joseph A, Valadie H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference