Reference: Mahrenholz CC, et al. (2011) Complex networks govern coiled-coil oligomerization - predicting and profiling by means of a machine learning approach. Mol Cell Proteomics 10(5):M110.004994

Reference Help

Abstract

Understanding the relationship between protein sequence and structure is one of the great challenges in biology. In the case of the ubiquitous coiled coil motif, structure and occurrence have been described in extensive detail, but there is a lack of insight into the rules that govern oligomerization, i.e., how many alpha-helices form a given coiled coil. To shed new light on the formation of two- and three-stranded coiled coils, we developed a machine learning approach to identify rules in the form of weighted amino acid patterns. These rules form the basis of our classification tool PrOCoil, which also visualizes the contribution of each individual amino acid to the overall oligomeric tendency of a given coiled coil sequence. We discovered that sequence positions previously thought irrelevant to direct coiled coil interaction have an undeniable impact on stoichiometry. Our rules also demystify the oligomerization behavior of the yeast transcription factor GCN4, which can now be described as a hybrid - part dimer and part trimer - with both theoretical and experimental justification.

Reference Type
Journal Article
Authors
Mahrenholz CC, Abfalter IG, Bodenhofer U, Volkmer R, Hochreiter S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference