Take our Survey

Reference: Montanes FM, et al. (2011) Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol Microbiol 79(4):1008-23

Reference Help

Abstract


Hyperosmotic stress triggers a complex adaptive response that is dominantly regulated by the Hog1 MAP kinase in yeast. Here we characterize a novel physiological determinant of osmostress tolerance, which involves the Hog1-dependent transcriptional downregulation of ergosterol biosynthesis genes (ERG). Yeast cells considerably lower their sterol content in response to high osmolarity. The transcriptional repressors Mot3 and Rox1 are essential for this response. Both factors together with Hog1 are required to rapidly and transiently shut down transcription of ERG2 and ERG11 upon osmoshock. Mot3 abundance and its binding to the ERG2 promoter is stimulated by osmostress in a Hog1-dependent manner. As an additional layer of control, the expression of the main transcriptional activator of ERG gene expression, Ecm22, is negatively regulated by Hog1 and Mot3/Rox1 upon salt shock. Oxidative stress also triggers repression of ERG2, 11 transcription and a profound decrease in total sterol levels. However, this response was only partially dependent on Mot3/Rox1 and Hog1. Finally, we show that the upc2-1 mutation confers stress insensitive hyperaccumulation of ergosterol, overexpression of ERG2, 11 and severe sensitivity to salt and oxidative stress. Our results indicate that transcriptional control of ergosterol biosynthesis is an important physiological target of stress signalling.CI - (c) 2010 Blackwell Publishing Ltd.

Reference Type
Journal Article
Authors
Montanes FM, Pascual-Ahuir A, Proft M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference