Reference: Chung C, et al. (2011) Computational refinement of post-translational modifications predicted from tandem mass spectrometry. Bioinformatics 27(6):797-806

Reference Help

Abstract


MOTIVATION: A post-translational modification (PTM) is a chemical modification of a protein that occurs naturally. Many of these modifications, such as phosphorylation, are known to play pivotal roles in the regulation of protein function. Henceforth, PTM perturbations have been linked to diverse diseases like Parkinson's, Alzheimer's, diabetes and cancer. To discover PTMs on a genome-wide scale, there is a recent surge of interest in analyzing tandem mass spectrometry data, and several unrestrictive (so-called blind) PTM search methods have been reported. However, these approaches are subject to noise in mass measurements and in the predicted modification site (amino acid position) within peptides, which can result in false PTM assignments. RESULTS: To address these issues, we devised a machine learning algorithm, PTMClust, that can be applied to the output of blind PTM search methods to improve prediction quality, by suppressing noise in the data and clustering peptides with the same underlying modification to form PTM groups. We showed that our technique outperforms two standard clustering algorithms on a simulated dataset. Additionally, we showed that our algorithm significantly improves sensitivity and specificity when applied to the output of three different blind PTM search engines, SIMS, InsPecT and MODmap. Compared to another PTM refinement algorithm PTMFinder, PTMClust markedly outperforms it. We demonstrated our technique is able to reduce false PTM assignments, improve overall detection coverage, and facilitate novel PTM discovery, including terminus modifications. We applied our technique to a large-scale yeast MS/MS proteome profiling dataset and found numerous known and novel PTMs. Accurately identifying modifications in protein sequences is a critical first step for PTM profiling, and thus our approach may benefit routine proteomic analysis. AVAILABILITY: Our algorithm is implemented in Matlab and is freely available for academic use. The software is available online from http://www.psi.toronto.edu/~cchung/PTMClust/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online or at http://www.psi.toronto.edu/~cchung/PTMClust/. CONTACT: frey@psi.utoronto.ca.

Reference Type
Journal Article
Authors
Chung C, Liu J, Emili A, Frey B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference