Reference: Baxa U, et al. (2011) In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset from the amyloid fibril backbone. Mol Microbiol 79(2):523-32

Reference Help

Abstract


In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter ( approximately 8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield approximately 1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.CI - Published 2010. This article is a US Government work and is in the public domain in the USA.

Reference Type
Journal Article
Authors
Baxa U, Keller PW, Cheng N, Wall JS, Steven AC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference