Reference: Ren X, et al. (2011) Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity. Environ Health Perspect 119(6):771-7

Reference Help

Abstract

BACKGROUND: In humans, inorganic arsenic (iAs) is metabolized to methylated arsenical species in a multistep process mainly mediated by arsenic (+3 oxidation state) methyltransferase (AS3MT). Among these metabolites is monomethylarsonous acid (MMAIII), the most toxic arsenic species. A recent study in As3mt-knockout mice suggests that unidentified methyltransferases could be involved in alternative iAs methylation pathways. We found that yeast deletion mutants lacking MTQ2 were highly resistant to iAs exposure. The human ortholog of the yeast MTQ2 is N-6 adenine-specific DNA methyltransferase 1 (N6AMT1), encoding a putative methyltransferase. OBJECTIVE: We investigated the potential role of N6AMT1 in arsenic-induced toxicity. METHODS: We measured and compared the cytotoxicity induced by arsenicals and their metabolic profiles using inductively coupled plasma-mass spectrometry in UROtsa human urothelial cells with enhanced N6AMT1 expression and UROtsa vector control cells treated with different concentrations of either iAsIII or MMAIII. RESULTS: N6AMT1 was able to convert MMAIII to the less toxic dimethylarsonic acid (DMA) when overexpressed in UROtsa cells. The enhanced expression of N6AMT1 in UROtsa cells decreased cytotoxicity of both iAsIII and MMAIII. Moreover, N6AMT1 is expressed in many human tissues at variable levels, although at levels lower than those of AS3MT, supporting a potential participation in arsenic metabolism in vivo. CONCLUSIONS: Considering that MMAIII is the most toxic arsenical, our data suggest that N6AMT1 has a significant role in determining susceptibility to arsenic toxicity and carcinogenicity because of its specific activity in methylating MMAIII to DMA and other unknown mechanisms.

Reference Type
Journal Article
Authors
Ren X, Aleshin M, Jo WJ, Dills R, Kalman DA, Vulpe CD, Smith MT, Zhang L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference