Reference: Frey AG and Eide DJ (2011) Roles of Two Activation Domains in Zap1 in the Response to Zinc Deficiency in Saccharomyces cerevisiae. J Biol Chem 286(8):6844-54

Reference Help

Abstract

Previous studies suggested that the zinc-responsive Zap1 transcriptional activator directly regulates the expression of over 80 genes in Saccharomyces cerevisiae. Many of these genes play key roles to enhance the ability of yeast cells to grow under zinc-limiting conditions. Zap1 is unusual among transcriptional activators in that it contains two activation domains, designated AD1 and AD2, which are regulated independently by zinc. These two domains are evolutionarily conserved among Zap1 orthologs suggesting that they are both important for Zap1 function. In this study, we have examined the roles of AD1 and AD2 in low zinc growth and the regulation of Zap1 target gene expression. Using alleles that are specifically disrupted for either AD1 or AD2 function, we found that these domains are not redundant and both are important for normal growth in low zinc. AD1 plays the primary role in zinc-responsive gene regulation while AD2 is required for maximal expression of only a few target promoters. AD1 alone is capable of driving full expression of most Zap1 target genes and dictates the kinetics of Zap1 gene induction in response to zinc withdrawal. Surprisingly, we found that AD1 is less active in zinc-limited cells under heat stress and AD2 plays a more important role under those conditions. These results suggest that AD2 may contribute more to Zap1 function when zinc deficiency is combined with other environmental stresses. In the course of these studies, we also found that the heat shock response is induced under conditions of severe zinc deficiency.

Reference Type
Journal Article
Authors
Frey AG, Eide DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference