Reference: Guo ZP, et al. (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 13(1):49-59

Reference Help

Abstract


To synthesize glycerol, a major by-product during anaerobic production of ethanol, the yeast Saccharomyces cerevisiae would consume up to 4% of the sugar feedstock in typical industrial ethanol processes. The present study was dedicated to decreasing the glycerol production mostly in industrial ethanol producing yeast without affecting its desirable fermentation properties including high osmotic and ethanol tolerance, natural robustness in industrial processes. In the present study, the GPD1 gene, encoding NAD(+)-dependent glycerol-3-phosphate dehydrogenase in an industrial ethanol producing strain of Saccharomyces cerevisiae, was deleted. Simultaneously, a non-phosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Bacillus cereus was expressed in the mutant deletion of GPD1. Although the resultant strain AG1A (gpd1 big up tri, open P(PGK)-gapN) exhibited a 48.7+/-0.3% (relative to the amount of substrate consumed) lower glycerol yield and a 7.6+/-0.1% (relative to the amount of substrate consumed) higher ethanol yield compared to the wild-type strain, it was sensitive to osmotic stress and failed to ferment on 25% glucose. However, when trehalose synthesis genes TPS1 and TPS2 were over-expressed in above recombinant strain AG1A, its high osmotic stress tolerance was not only restored but also improved. In addition, this new recombinant yeast strain displayed further reduced glycerol yield, indistinguishable maximum specific growth rate (mu(max)) and fermentation ability compared to the wild type in anaerobic batch fermentations. This study provides a promising strategy to improve ethanol yields by minimization of glycerol production.CI - Copyright (c) 2010. Published by Elsevier Inc.

Reference Type
Journal Article
Authors
Guo ZP, Zhang L, Ding ZY, Shi GY
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference