Take our Survey

Reference: Chakraborty S, et al. (2010) Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks. BMC Syst Biol 4:155

Reference Help

Abstract


ABSTRACT: BACKGROUND: Evolutionary rates of proteins in a protein-protein interaction network are primarily governed by the protein connectivity and/or expression level. A recent study revealed the importance of the features of the interacting protein partners, viz., the coefficient of functionality and clustering coefficient in controlling the protein evolutionary rates in a protein-protein interaction (PPI) network. RESULTS: By multivariate regression analysis we found that the three parameters: probability of complex formation, expression level and degree of a protein independently guide the evolutionary rates of proteins in the PPI network. The contribution of the complex forming property of a protein and its expression level led to nearly 43% of the total variation as observed from the first principal component. We also found that for complex forming proteins in the network, those which have partners sharing the same functional class evolve faster than those having partners belonging to different functional classes. The proteins in the dense parts of the network evolve faster than their counterparts which are present in the sparse regions of the network. Taking into account the complex forming ability, we found that all the complex forming proteins considered in this study evolve slower than the non-complex forming proteins irrespective of their localization in the network or the affiliation of their partners to same/different functional classes. CONCLUSIONS: We have shown here that the functionality and clustering coefficient correlated with the degree of the protein in the protein-protein interaction network. We have identified the significant relationship of the complex-forming property of proteins and their evolutionary rates even when they are classified according to the features of their interacting partners. Our study implies that the evolutionarily constrained proteins are actually members of a larger number of protein complexes and this justifies why they have enhanced expression levels.

Reference Type
Journal Article
Authors
Chakraborty S, Kahali B, Ghosh TC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference