Take our Survey

Reference: Otero JM, et al. (2010) Yeast biological networks unfold the interplay of antioxidants, genome and phenotype, and reveal a novel regulator of the oxidative stress response. PLoS One 5(10):e13606

Reference Help

Abstract


BACKGROUND: Identifying causative biological networks associated with relevant phenotypes is essential in the field of systems biology. We used ferulic acid (FA) as a model antioxidant to characterize the global expression programs triggered by this small molecule and decipher the transcriptional network controlling the phenotypic adaptation of the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS: By employing a strict cut off value during gene expression data analysis, 106 genes were found to be involved in the cell response to FA, independent of aerobic or anaerobic conditions. Network analysis of the system guided us to a key target node, the FMP43 protein, that when deleted resulted in marked acceleration of cellular growth ( approximately 15% in both minimal and rich media). To extend our findings to human cells and identify proteins that could serve as drug targets, we replaced the yeast FMP43 protein with its human ortholog BRP44 in the genetic background of the yeast strain Deltafmp43. The conservation of the two proteins was phenotypically evident, with BRP44 restoring the normal specific growth rate of the wild type. We also applied homology modeling to predict the 3D structure of the FMP43 and BRP44 proteins. The binding sites in the homology models of FMP43 and BRP44 were computationally predicted, and further docking studies were performed using FA as the ligand. The docking studies demonstrated the affinity of FA towards both FMP43 and BRP44. CONCLUSIONS: This study proposes a hypothesis on the mechanisms yeast employs to respond to antioxidant molecules, while demonstrating how phenome and metabolome yeast data can serve as biomarkers for nutraceutical discovery and development. Additionally, we provide evidence for a putative therapeutic target, revealed by replacing the FMP43 protein with its human ortholog BRP44, a brain protein, and functionally characterizing the relevant mutant strain.

Reference Type
Journal Article
Authors
Otero JM, Papadakis MA, Udatha DB, Nielsen J, Panagiotou G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference