Reference: Zenklusen D and Singer RH (2010) Analyzing mRNA expression using single mRNA resolution fluorescent in situ hybridization. Methods Enzymol 470:641-59

Reference Help

Abstract

As the product of transcription and the blueprint for translation, mRNA is the main intermediate product of the gene expression pathway. The ability to accurately determine mRNA levels is, therefore, a major requirement when studying gene expression. mRNA is also a target of different regulatory steps, occurring in different subcellular compartments. To understand the different steps of gene expression regulation, it is therefore essential to analyze mRNA in the context of a single cell, maintaining spatial information. Here, we describe a stepwise protocol for fluorescent in situ hybridization (FISH) that allows detection of individual mRNAs in single yeast cells. This method allows quantitative analysis of mRNA expression in single cells, permitting "absolute" quantification by simply counting mRNAs. It further allows us to study many aspects of mRNA metabolism, from transcription to processing, localization, and mRNA degradation.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.FAU - Zenklusen, Danie.

Reference Type
Journal Article
Authors
Zenklusen D, Singer RH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference