Reference: Wapinski I and Regev A (2010) Reconstructing gene histories in ascomycota fungi. Methods Enzymol 470:447-85

Reference Help

Abstract

Whole-genome sequencing allows researchers to study evolution through the lens of comparative genomics. Several landmark studies in yeast have showcased the utility of this approach for identifying functional elements, tracing the evolution of gene regulatory sites, and the revelation of an ancestral whole-genome duplication event. Such studies first require an accurate and comprehensive mapping of all orthologous loci across all species. In this chapter, we present a computational framework for systematic reconstruction of all gene orthology relations across multiple yeast species. We then discuss how to use the resulting genome- and species-wide catalogue of gene phylogenies to study the histories of gene duplications and losses from a functional genomics perspective. We show how these methods allowed us to uncover the functional constraints underlying gene duplications and losses within Ascomycota fungi, and to highlight the importance and limitations of these evolutionary processes. The analytical framework we present here is generalizable and scalable, and can be applied to an array of comparative genomics needs.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Wapinski I, Regev A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference