Reference: Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119-42

Reference Help

Abstract


We present a detailed protocol for ribosome profiling, an approach that we developed to make comprehensive and quantitative measurements of translation in yeast. In this technique, ribosome positions are determined from their nuclease footprint on their mRNA template and the footprints are quantified by deep sequencing. Ribosome profiling has already enabled highly reproducible measurements of translational control. Because this technique reports on the exact position of ribosomes, it also revealed the presence of ribosomes on upstream open reading frames and demonstrated that ribosome density was higher near the beginning of protein-coding genes. Here, we describe nuclease digestion conditions that produce uniform ~28 nucleotide (nt) protected fragments of mRNA templates that indicate the exact position of translating ribosomes. We also give a protocol for converting these RNA fragments into a DNA library that can be sequenced using the Illumina Genome Analyzer. Unbiased conversion of anonymous, small RNAs into a sequencing library is challenging, and we discuss standards that played a key role in optimizing library generation. Finally, we discuss how deep sequencing data can be used to quantify gene expression at the level of translation.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.FAU - Ingolia, Nicholas.

Reference Type
Journal Article
Authors
Ingolia NT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference