Reference: Xiong B, et al. (2010) Hos1 is a lysine deacetylase for the smc3 subunit of cohesin. Curr Biol 20(18):1660-5

Reference Help

Abstract


Chromosome cohesion is a cell-cycle-regulated process in which sister chromatids are held together from the time of replication until the time of separation at the metaphase-to-anaphase transition, ensuring accurate chromosome segregation [1-9]. Chromosome cohesion is established during S phase, and this process requires the four subunits of the cohesin complex (Smc1, Smc3, Mcd1/Scc1, and Irr1/Scc3) and the acetyltransferase Eco1 [10-13]. Acetylation of Smc3 by Eco1 at two evolutionarily conserved lysine residues promotes cohesion establishment during S phase in budding yeast and humans [14-16]. Here we report that Hos1, a member of the evolutionarily conserved class I histone deacetylase family, acts as a deacetylase for Smc3 in S. cerevisiae. We examine the Smc3 acetylation level in nine histone deacetylase deletion strains and find that the acetylation level is increased specifically in a hos1Delta strain post-S phase. Coimmunoprecipitation experiments show that Hos1 interacts with Smc3 and that the interaction is most pronounced as cells reach anaphase. We provide direct evidence that Hos1 can deacetylate Smc3 and retains a soluble pool of deacetylated Smc3. Overexpression of Hos1 results in less acetylation of Smc3 and cohesion defects in both WT and eco1 mutant strains; mutation of the Hos1 active site abolishes the defects. Hos1 may help to maintain a pool of unacetylated Smc3 that can be used for new chromosome cohesion.CI - Copyright (c) 2010 Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Xiong B, Lu S, Gerton JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference