Take our Survey

Reference: Rush JS, et al. (2010) Expression of functional bacterial undecaprenyl pyrophosphate synthase in the yeast rer2{Delta} mutant and CHO cells. Glycobiology 20(12):1585-93

Reference Help

Abstract


During evolution the average chain length of polyisoprenoid glycosyl carrier lipids increased from C55 (prokaryotes) to C75 (yeast) to C95 (mammalian cells). In this study the ability of the E. coli enzyme, undecaprenyl pyrophosphate synthase (UPPS) to complement the loss of the yeast cis-isoprenyltransferase (cis-IPTase) in the rer2Delta mutant was tested to determine if (55)dolichyl phosphate (Dol-P) could functionally substitute in the protein N-glycosylation pathway for (75)Dol-P, the normal isoprenologue synthesized in S. cerevisiae. First, expression of UPPS in the yeast mutant was found to complement the growth and the hypoglycosylation of carboxypeptidase Y (CPY) defects suggesting that the (55)polyprenyl-P-P intermediate was converted to (55)Dol-P, and that (55)Dol-P could effectively substitute for (75)Dol-P in the biosynthesis and function of Man-P-Dol, Glc-P-Dol and Glc(3)Man(9)GlcNAc(2)-P-P-Dol (mature DLO) in the protein N-glycosylation pathway and GPI anchor assembly. In support of this conclusion mutant cells expressing UPPS: 1) synthesized (55)Dol-P based on MS analysis; 2) utilized (55)Dol-P to form Man-P-(55)Dol in vitro and in vivo and 3) synthesized N-linked glycoproteins at virtually normal rates as assessed by metabolic labeling with [(3)H]mannose. In addition, an N-terminal GFP-tagged construct of UPPS was shown to localize to the ER of CHO cells. Consistent with the synthesis of (55)Dol-P by the transfected cells, microsomes from the transfected cells synthesized the [(14)C](55)polyprenyl-P-P intermediate when incubated with [(14)C]isopentenyl pyrophosphate (I-P-P), and [(3)H]Man-P-(55)Dol when incubated with GDP-[(3)H]Man. These results indicate that (C55)polyisoprenoid chains, significantly shorter than the natural glycosyl carrier lipid, can function in the transbilayer movement of DLOs in the ER of yeast and mammalian cells, and that conserved sequences in the cis-IPTases are recognized by, yet to be identified, binding partners in the ER of mammalian cells.

Reference Type
Journal Article
Authors
Rush JS, Matveev S, Guan Z, Raetz CR, Waechter CJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference