Reference: Bhatia-Kissova I and Camougrand N (2010) Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res 10(8):1023-34

Reference Help

Abstract


Abstract Mitochondria are essential for oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondria also monitor and evaluate complex information from the environment and intracellular milieu, including the presence or absence of growth factors, oxygen, reactive oxygen species, and DNA damage. It follows that disturbances of the integrity of mitochondrial function lead to the disruption of cell function, expressed as disease, aging, or cell death. It has been assumed that the degradation of damaged mitochondria by an autophagy-related pathway specific to mitochondria (mitophagy), recently found to be strictly regulated, is a fundamental process essential for cell homeostasis. Until now, the main role of mitophagy has been tentatively defined as a 'house-cleaning' pathway that allows to eliminate altered mitochondria, but mitophagy may also play a role in the adaptation of the number and quality of mitochondria to new environmental conditions. In yeast, recent data defined two categories of mitophagy actors: ones constitutively required for mitophagy and those with mitophagy-regulatory functions. Situations were also uncovered in normal physiology in which cells utilize mitophagy to eliminate damaged, dysfunctional, and superfluous mitochondria to adjust to changing physiological demands.

Reference Type
Journal Article
Authors
Bhatia-Kissova I, Camougrand N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference