Reference: Jacquier N and Schneiter R (2010) Ypk1, the yeast orthologue of the human serum- and glucocorticoid-induced kinase, is required for efficient uptake of fatty acids. J Cell Sci 123(Pt 13):2218-27

Reference Help

Abstract


Fatty acids constitute an important energy source for various tissues. The mechanisms that mediate and control uptake of free fatty acids from the circulation, however, are poorly understood. Here we show that efficient fatty-acid uptake by yeast cells requires the protein kinase Ypk1, the orthologue of the human serum- and glucocorticoid-induced kinase Sgk1. ypk1Delta mutant cells fail to grow under conditions that render cells auxotrophic for fatty acids, show a reduced uptake of radiolabelled or fluorescently labelled fatty acids, lack the facilitated component of the uptake activity, and have elevated levels of fatty acids in a bovine serum albumin (BSA) back-extractable compartment. Efficient fatty-acid uptake and/or incorporation requires the protein-kinase activity of Ypk1, because a kinase-dead point-mutant allele of YPK1 is defective in this process. This function of Ypk1 in fatty-acid uptake and/or incorporation is functionally conserved, because expression of the human Sgk1 kinase rescues ypk1Delta mutant yeast. These observations suggest that Ypk1 and possibly the human Sgk1 kinase affect fatty-acid uptake and thus energy homeostasis through regulating endocytosis. Consistent with such a proposition, mutations that block early steps of endocytosis display reduced levels of fatty-acid uptake.

Reference Type
Journal Article
Authors
Jacquier N, Schneiter R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference