Take our Survey

Reference: Zhao Y and Lin YH (2010) Whole-cell protein identification using the concept of unique peptides. Genomics Proteomics Bioinformatics 8(1):33-41

Reference Help

Abstract

A concept of unique peptides (CUP) was proposed and implemented to identify whole-cell proteins from tandem mass spectrometry (MS/MS) ion spectra. A unique peptide is defined as a peptide, irrespective of its length, that exists only in one protein of a proteome of interest, despite the fact that this peptide may appear more than once in the same protein. Integrating CUP, a two-step whole-cell protein identification strategy was developed to further increase the confidence of identified proteins. A dataset containing 40,243 MS/MS ion spectra of Saccharomyces cerevisiae and protein identification tools including Mascot and SEQUEST were used to illustrate the proposed concept and strategy. Without implementing CUP, the proteins identified by SEQUEST are 2.26 fold of those identified by Mascot. When CUP was applied, the proteins bearing unique peptides identified by SEQUEST are 3.89 fold of those identified by Mascot. By cross-comparing two sets of identified proteins, only 89 common proteins derived from CUP were found. The key discrepancy between identified proteins was resulted from the filtering criteria employed by each protein identification tool. According to the origin of peptides classified by CUP and the commonality of proteins recognized by protein identification tools, all identified proteins were cross-compared, resulting in four groups of proteins possessing different levels of assigned confidence.CI - 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

Reference Type
Journal Article
Authors
Zhao Y, Lin YH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference