Take our Survey

Reference: Aggarwal M, et al. (2010) Delineation of WRN helicase function with EXO1 in the replicational stress response. DNA Repair (Amst) 9(7):765-76

Reference Help

Abstract

The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent pathway to rescue rad50 sensitivity to methylmethane sulfonate (MMS). WRN helicase, but not exonuclease, is required for MMS resistance. WRN missense mutations in helicase or RecQ C-terminal domains interfered with the ability of WRN to rescue rad50 MMS sensitivity. WRN does not rescue rad50 ionizing radiation (IR) sensitivity, suggesting that WRN, in collaboration with yEXO1, is tailored to relieve replicational stress imposed by alkylated base damage. WRN and yEXO1 are associated with each other in vivo. Purified WRN stimulates hEXO1 nuclease activity on DNA substrates associated with a stalled or regressed replication fork. We propose WRN helicase operates in an EXO1-dependent pathway to help cells survive replicational stress. In contrast to WRN, BLM helicase defective in Bloom's syndrome failed to rescue rad50 MMS sensitivity, but partially restored IR resistance, suggesting a delineation of function by the human RecQ helicases.CI - Copyright (c) 2010. Published by Elsevier B.V.

Reference Type
Journal Article
Authors
Aggarwal M, Sommers JA, Morris C, Brosh RM Jr
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference