Reference: Kim N and Jinks-Robertson S (2010) Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol Cell Biol 30(13):3206-15

Reference Help

Abstract

Abasic (AP) sites are potent blocks to DNA and RNA polymerases, and their repair is essential for maintaining genome integrity. Although AP sites are efficiently dealt with through the base excision repair (BER) pathway, genetic studies suggest that repair can also occur via nucleotide excision repair (NER). The involvement of NER in AP-site removal has been puzzling, however, as this pathway is thought to target only bulky lesions. Here, we examine the repair of AP sites generated when uracil is removed from a highly transcribed gene in yeast. Because uracil is incorporated instead of thymine under these conditions, the position of the resulting AP site is known. Results demonstrate that only AP sites on the transcribed strand are efficient substrates for NER, suggesting recruitment of the NER machinery by an AP-blocked RNA polymerase. Such transcription-coupled NER of AP sites may explain previously suggested links between the BER pathway and transcription.

Reference Type
Journal Article
Authors
Kim N, Jinks-Robertson S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference