Reference: Bzymek M, et al. (2010) Double Holliday junctions are intermediates of DNA break repair. Nature 464(7290):937-41

Reference Help

Abstract

Repair of DNA double-strand breaks (DSBs) by homologous recombination is crucial for cell proliferation and tumour suppression. However, despite its importance, the molecular intermediates of mitotic DSB repair remain undefined. The double Holliday junction (DHJ), presupposed to be the central intermediate for more than 25 years, has only been identified during meiotic recombination. Moreover, evidence has accumulated for alternative, DHJ-independent mechanisms, raising the possibility that DHJs are not formed during DSB repair in mitotically cycling cells. Here we identify intermediates of DSB repair by using a budding-yeast assay system designed to mimic physiological DSB repair. This system uses diploid cells and provides the possibility for allelic recombination either between sister chromatids or between homologues, as well as direct comparison with meiotic recombination at the same locus. In mitotically cycling cells, we detect inter-homologue joint molecule (JM) intermediates whose strand composition and size are identical to those of the canonical DHJ structures observed in meiosis. However, in contrast to meiosis, JMs between sister chromatids form in preference to those between homologues. Moreover, JMs seem to represent a minor pathway of DSB repair in mitotic cells, being detected at about tenfold lower levels (per DSB) than during meiotic recombination. Thus, although DHJs are identified as intermediates of DSB-promoted recombination in both mitotic and meiotic cells, their formation is distinctly regulated according to the specific dictates of the two cellular programs.

Reference Type
Journal Article
Authors
Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference