Take our Survey

Reference: Babbitt GA, et al. (2010) The molecular evolution of nucleosome positioning through sequence-dependent deformation of the DNA polymer. J Biomol Struct Dyn 27(6):765-80

Reference Help

Abstract


The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.

Reference Type
Journal Article
Authors
Babbitt GA, Tolstorukov MY, Kim Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference