Take our Survey

Reference: Moriel-Carretero M and Aguilera A (2010) A Postincision-Deficient TFIIH Causes Replication Fork Breakage and Uncovers Alternative Rad51- or Pol32-Mediated Restart Mechanisms. Mol Cell 37(5):690-701

Reference Help

Abstract


Homologous recombination is a major double-strand break (DSB) repair mechanism that acts during the S and G2 phases. In contrast, nucleotide excision repair (NER) is a major pathway for the repair of DNA bulky adducts that is unrelated to replication. We show that replication can be strongly disturbed in a specific type of rad3/XPD NER mutant of TFIIH, causing replication fork breakage. In contrast to classical NER-deficient mutations, the S. cerevisiae rad3-102 allele, which has a minimal impact on UV resistance, channels bulky adducts into DSBs. rad3-102 allows Rad1/XPF- and Rad2/XPG-catalyzed DNA incisions but fails to perform postincision steps retaining TFIIH at the damaged site. Broken forks are rescued by MRX-Rad52-Rfc1-dependent recombination via two types of replication restart mechanisms, one being Rad51 dependent and the other Pol32 dependent. Our results define the genetic and molecular hallmarks of replication fork breakage and restart and bring insights to understand specific NER-related human syndromes.CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Moriel-Carretero M, Aguilera A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference