Reference: Baur JA (2010) Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131(4):261-9

Reference Help

Abstract


Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs. To date, such efforts have been hindered primarily by our lack of mechanistic understanding of how DR works. Sirtuins, NAD+-dependent deacetylases and ADP-ribosyltransferases that influence lifespan in lower organisms, have been proposed to be key mediators of DR, and based on this model, the sirtuin activator resveratrol has been proposed as a candidate DR-mimetic. Indeed, resveratrol extends lifespan in yeast, worms, flies, and a short-lived species of fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, but its precise mechanism of action remains a subject of debate, and extension of normal lifespan has not been observed. This review summarizes recent work on resveratrol, sirtuins, and their potential to mimic beneficial effects of DR.CI - Copyright (c) 2010. Published by Elsevier Ireland Ltd.

Reference Type
Journal Article
Authors
Baur JA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference