Take our Survey

Reference: Kummel A, et al. (2010) Differential glucose repression in common yeast strains in response to HXK2 deletion. FEMS Yeast Res 10(3):322-32

Reference Help

Abstract

Abstract Under aerobic, high glucose conditions, Saccharomyces cerevisiae exhibits glucose repression and thus a predominantly fermentative metabolism. Here, we show that two commonly used prototrophic representatives of the CEN.PK and S288C strain families respond differently to deletion of the hexokinase 2 (HXK2) - a key player in glucose repression: In CEN.PK, growth rate collapses and derepression occurs on the physiological level, while the S288C descendant FY4 Deltahxk2 still grows like the parent strain and shows a fully repressed metabolism. A CEN.PK Deltahxk2 strain with a repaired adenylate cyclase gene CYR1 maintains repression but not growth rate. A comparison of the parent strain's physiology, metabolome, and proteome revealed higher metabolic rates, identical biomass, and byproduct yields, suggesting a lower Snf1 activity and a higher protein kinase A (PKA) activity in CEN.PK. This study highlights the importance of the genetic background in the processes of glucose signaling and regulation, contributes novel evidence on the overlap between the classical glucose repression pathway and the cAMP/PKA signaling pathway, and might have the potential to resolve some of the conflicting findings existing in the field.

Reference Type
Journal Article
Authors
Kummel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference