Take our Survey

Reference: Kholodenko BN and Birtwistle MR (2009) Four-dimensional dynamics of MAPK information processing systems. Wiley Interdiscip Rev Syst Biol Med 1(1):28-44

Reference Help

Abstract

Mitogen activated protein kinase (MAPK) cascades process a myriad of stimuli received by cell-surface receptors and generate precise spatio-temporal guidance for multiple target proteins, dictating receptor-specific cellular outcomes. Computational modelling reveals that the intrinsic topology of MAPK cascades enables them to amplify signal sensitivity and amplitude, reduce noise and display intricate dynamic properties, which include toggle switches, excitation pulses and oscillations. Specificity of signaling responses can be brought about by signal-induced feedback and feedforward wiring imposed on the MAPK cascade backbone. Intracellular gradients of protein activities arise from the spatial separation of opposing reactions in kinase-phosphatase cycles. The membrane confinement of the initiating kinase in MAPK cascades and cytosolic localization of phosphatases can result in precipitous gradients of phosphorylated signal-transducers if they spread solely by diffusion. Endocytotic trafficking of active kinases driven by molecular motors and traveling waves of protein phosphorylation can propagate phosphorylation signals from the plasma membrane to the nucleus, especially in large cells, such as Xenopus eggs.

Reference Type
Journal Article | Review | Research Support, N.I.H., Extramural
Authors
Kholodenko BN, Birtwistle MR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference