Reference: Liu B, et al. (2010) The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates. Cell 140(2):257-267

Reference Help

Abstract


The paradigm sirtuin, Sir2p, of budding yeast is required for establishing cellular age asymmetry, which includes the retention of damaged and aggregated proteins in mother cells. By establishing the global genetic interaction network of SIR2 we identified the polarisome, the formin Bni1p, and myosin motor protein Myo2p as essential components of the machinery segregating protein aggregates during mitotic cytokinesis. Moreover, we found that daughter cells can clear themselves of damage by a polarisome- and tropomyosin-dependent polarized flow of aggregates into the mother cell compartment. The role of Sir2p in cytoskeletal functions and polarity is linked to the CCT chaperonin in sir2Delta cells being compromised in folding actin. We discuss the findings in view of recent models hypothesizing that polarity may have evolved to avoid clonal senescence by establishing an aging (soma-like) and rejuvenated (germ-like) lineage. PAPERFLICK:CI - Copyright (c) 2010 Elsevier Inc. All rights reserved.

Reference Type
Journal Article
Authors
Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference