Reference: MacNeill SA (2010) Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425(3):489-500

Reference Help

Abstract

High-fidelity chromosomal DNA replication is fundamental to all forms of cellular life and requires the complex interplay of a wide variety of essential and non-essential protein factors in a spatially and temporally co-ordinated manner. In eukaryotes, the GINS complex (from the Japanese go-ichi-ni-san meaning 5-1-2-3, after the four related subunits of the complex Sld5, Psf1, Psf2 and Psf3) was recently identified as a novel factor essential for both the initiation and elongation stages of the replication process. Biochemical analysis has placed GINS at the heart of the eukaryotic replication apparatus as a component of the CMG [Cdc45-MCM (minichromosome maintenance) helicase-GINS] complex that most likely serves as the replicative helicase, unwinding duplex DNA ahead of the moving replication fork. GINS homologues are found in the archaea and have been shown to interact directly with the MCM helicase and with primase, suggesting a central role for the complex in archaeal chromosome replication also. The present review summarizes current knowledge of the structure, function and evolution of the GINS complex in eukaryotes and archaea, discusses possible functions of the GINS complex and highlights recent results that point to possible regulation of GINS function in response to DNA damage.

Reference Type
Journal Article | Review | Research Support, Non-U.S. Gov't
Authors
MacNeill SA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference