Take our Survey

Reference: Thornton N, et al. (2010) Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J Mol Biol 396(3):540-9

Reference Help

Abstract


The mitochondrial outer membrane contains two translocase machineries for precursor proteins--the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of beta-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the beta-barrel protein Tom40 but also a subset of alpha-helical subunits. While the interaction of beta-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and alpha-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of alpha-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the alpha-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the alpha-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes.CI - Copyright (c) 2009. Elsevier Ltd. All rights reserved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Thornton N, Stroud DA, Milenkovic D, Guiard B, Pfanner N, Becker T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference