Take our Survey

Reference: Zadrag R, et al. (2008) Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae. Curr Aging Sci 1(3):159-65

Reference Help

Abstract


The applicability of the free radical theory of aging to the yeast S. cerevisiae is a matter of debate. In order to get an insight into this question, we studied the reproductive potential (the number of buds produced), reproductive lifespan (the time during which a yeast cell is able to divide), postreproductive lifespan (duration of life of yeast cells which ceased to divide) and total lifespan (sum of reproductive lifespan and postreproductive lifespan) of three isogenic pairs of yeast strains. Each pair contained a parent strain and a disruptant of gene(s) coding for important antioxidant enzyme(s) (CuZn-superoxide dismutase, all five peroxiredoxins or glutaredoxin 5). Although the reproductive potential was decreased in all antioxidant enzyme-deficient mutants, the differences in the reproductive lifespan between the parent strains and the mutants were less pronounced while postreproductive lifespan and total lifespan were not diminished in the mutants. These results suggest that either the free-radical theory of aging is not applicable to S. cerevisiae or that this yeast is not a proper model organism for the study of aging of higher organisms. In our opinion the latter possibility is more apparent and the increase in cell volume (unavoidable for a cell propagating by budding) rather than accumulation of oxidative damage may be the main reason for the cessation of budding (and perhaps postreproductive death) in S. cerevisiae.

Reference Type
Journal Article
Authors
Zadrag R, Bartosz G, Bilinski T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference